
/ . Am. Chem. Soc. 1991, 113, 7767-7768 7767 

Deoxyoligonucleotides Bearing Neutral Analogues of 
Phosphodiester Linkages Recognize Duplex DNA via 
Triple-Helix Formation 

Mark Matteucci,* Kuei-Ying Lin, Samuel Butcher, and 
Courtney Moulds 

Gilead Sciences, Inc., 346 Lakeside Drive 
Foster City, California 94404 

Received April 22, 1991 

The sequence-specific recognition of duplex DNA using un
modified deoxyoligonucleotides (DONs) via triple-strand formation 
has been demonstrated1 and offers a significant opportunity to 
develop a new class of pharmaceutical agents. Unmodified DONs 
are susceptible to nucleases and may prove to have difficulty in 
crossing cell membranes.2 Neutral analogues of phosphodiesters 
have attracted attention as solutions to the nuclease and cellular 
permeation problems3 and have been used to target messenger 
RNA in cell culture systems. Little has been reported on the 
ability of DONs containing neutral replacements of the phos
phodiester to form a triple helix with duplex DNA under phys
iological salt conditions. 

Methylphosphonates (MPs) have been reported to form triple 
helices with very short DONs4 and longer sequences,5 however, 
MPs are also reported not to form triple-stranded structures.6 We 
report the synthesis and triple-helix formation of DONs containing 
the diastereomeric MP7 and (methoxyethyl)phosphoramidate 
(MEA),8 and the achiral formacetal9 and the previously unreported 
5' thioibrmacetal. A footprint assay10 was used which allows for 
the assessment of the modified linkages' effect on binding affinity 
and specificity. 

Synthesis. The sequences tested along with the synthetic scheme 
are shown in Figure 1. Each analogue linkage was incorporated 
into a 5-methyl-/V-benzoyl-2'-deoxycytidine-thymidine (5-MeC-
T) dimer protected at the 5' end with dimethoxytrityl (DMT) and 
derivatized at the 3' end with a H-phosphonate salt." The MP 
I,7 MEA 2,8 and formacetal 39a linkages were synthesized as 
previously reported. The thioformacetal 4 was synthesized in an 
analogous manner to that of the formacetal.12 Phosphonylation 
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Figure 1. Dimer synthons, sequences, and synthetic scheme for thio
formacetal: (i) Br2, 4-A molecular sieves, 2,6-diethylpyridine/benzene; 
(ii) Bu4NF/THF; (iii) 2-chloro-4/M,3,2-benzodioxaphosphorin-4-one/ 
pyridine. 

of all dimers and subsequent incorporation into DONs on a 
controlled pore glass (CPG) support was as previously reported.11'15 

Characterization. The DONs bearing formacetal 8 and thio
formacetal linkages 9 were characterized by end labeling and 
selective partial degradation of the modified linkage.16 Limited 
formic acid treatment resulted in partial cleavage at the form
acetal98 and thioformacetal linkages showing the presence of the 
four analogue linkages in each DON. The control DON 7, 
containing only phosphodiester linkages, showed no cleavage. 
Limited bromine treatment partially cleaved the thioformacetal 
linkages in 9,17 with the formacetal 8 and phosphodiester 7 DONs 
showing no cleavage under the same conditions. The MEA 11 
and MP 10 were also radiolabeled, and the modified linkages were 
mapped using piperidine as previously reported7'8 (data not shown). 

Triple-Helix Binding. The affinity and specificity analysis was 
performed using the DNA footprinting technique that has been 
extensively exploited to elucidate the sequence specificity of DNA 
protein interactions. This technique has also been used to map 
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Figure 2. Footprint analysis. Conditions for footprint: Concentrations 
of DONs shown were in micromoles/liter, and the radiolabeled target 
duplex (370-bp restriction fragment derived from a PUC vector con
taining a synthetic DNA insert) was approximately 1 nM in 20 mM 
MOPS. pH 6.8. 140 mM KCl, 10 mM NaCl, 1 mM MgCI2, I mM 
spermine hydrochloride. Triple-stranded hybridizations (50 «1.) were 
done for 1 h at 37 "C followed by limited DNase I digestion (2 units for 
1 min), followed by EDTA quenching. PAGE, and autoradiography. 

triple-helix formation.IW8 The target sequence is shown in Figure 
2 along with the autoradiogram resulting from the footprint ex
periment. The target sequence has been repeated a second time, 
an adenosine to guanosine base change having been introduced 
in the polypurine tract, creating a single triplet mismatch for the 
test DONs. This allows for the assessment of the ability of a given 
DON to discriminate a perfect match from one mismatch. The 
region of the mismatch target is shown by a bar labeled 1 on the 
autoradiogram, and the perfect match is labeled 2. 

The control phosphodiester DON 7 shows protection of the 
target from DNase I when present at 1 »iM, and binding to the 
single mismatched target occurs only at 100 ^M. The formacetal 
DON 8 shows a similar specific footprint. The MP DON 10 
requires a > 10-fold-higher concentration to give similar protection 
as compared to the two previous DONs. The MEA 11 and 
thioformacetal 9 DONs show reduced binding relative to 10 with 
partial protection from DNase being observed at IO uM. 

The formacetal linkage is competent for sequence-specific 
triple-helix binding when placed in a 5-MeC-T context. The 
shorter 3'-oxygen to 5'-oxygen distance in the formacetal linkage 
relative to a phosphodiester is perhaps not a liability, given the 
shorter ribose to ribose distances in A-form helix versus B-form." 
The reduced binding of the thioformacetal is surprising.20 The 
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MP 10 required a > 10-fold-higher concentration for binding 
relative to the diester and formacetal DONs.21 The MEA 11 
is clearly inferior to MP in this context. This result parallels the 
two linkages' ability to form duplex structures with single-stranded 
DNA and R N A . , M c These results show the promise of neutral 
achiral formacetal DON analogues as agents capable of se
quence-specific triple-helix formation. 
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(21) IO and U are mixtures of 16 diastereomers. One of the isomers in 
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DNA photolyase1 is the enzyme involved in the cleavage of 
pyrimidine photodimers in UV-damaged DNA (eq 1). Although 
several model systems for this reaction have been reported, their 
mechanisms remain poorly understood.2 The quinone-sensitized 
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cleavage, for example, has been proposed2 to proceed by electron 
transfer from the photodimer to the photoexcited quinone followed 
by sequential cleavage of the C6.C6' and the CS1CS' bonds of the 
photodimer and reduction of the uracil radical cation by the 
semiquinone radical (Scheme I). The only experimental evidence 
in support of this proposal is the observation of CIDNP in the 
product.3 With the view of developing mechanistic probes for 
the enzymatic reaction, we have synthesized a photodimer sub
stituted with a radical trap designed to block the quinone-sensitized 
photodimer fragmentation after the first CC bond cleavage. 

The most frequently used trap for enzyme-generated radicals 
involves the rapid ring opening of the methylcyclopropyl radical.4 

(1) For leading references, see: (a) Sancar, A.; Sancar, G. B. In Annual 
Reviews of Biochemistry, Richardson, C. C, Ed.; Annual Reviews, Inc.: Palo 
Alto. 1988; Vol. 57, pp 29-68. (b) Myles. G. M.; Sancar, A. Chem. Res. 
Toxicol. 1989. 2. 197. (c) Eker. A. P. M. In Molecular Models of Photo-
responsiveness; Montagnoli, G, Erlanger. B. F., Eds.; Plenum Press: New 
York, 1983; pp 109-132. 

(2) (a) Lamola, A. A. MoI. Photochem. 1972, 4, 107. (b) Roth, H. D.; 
Lamola, A. A. / . Am. Chem. Soc. 1972, 94, 1013. (c) Pac, C; Kubo, J.; 
Majima, T.; Sakurai, H. Photochem. Pholobiol. 1982, 36, 273. (d) Helene, 
C; Charlier, M. Photochem. Photobiol. 1977, 25,429. (e) Van Camp. J. R.; 
Young, T.; Hartmann, R. F.; Rose, S. D. Photochem. Photobiol. 1987, 45, 
365. (0 Hartmann, R. F.; Van Camp, J. R.; Rose, S. D. J. Org. Chem. 1987, 
52,2684. (g) Rokita, S. E.; Walsh, C. T. J. Am. Chem. Soc. 1984,106,4589. 
(h) Jorns, M. S. / . Am. Chem. Soc. 1987, 109, 3133. 

(3) (a) Roth. H. D.; Lamola, A. A. J. Am. Chem. Soc. 1972, 94, 1013. 
(b) Kemmink, J.; Eker, A. P. M.; Kaptein, R. Photochem. Photobiol. 1986, 
44, 137. (c) Young, T.; Nieman, R.; Rose, S. Photochem. Photobiol. 1990, 
52,661. 

0002-7863/91/1513-7768S02.50/0 © 1991 American Chemical Society 


